Structural subtyping for inductive types with functorial equality rules

نویسندگان

  • Zhaohui Luo
  • Robin Adams
چکیده

Subtyping for inductive types in dependent type theories is studied in the framework of coercive subtyping. General structural subtyping rules for parameterised inductive types are formulated based on the notion of inductive schemata. Certain extensional equality rules play an important role in proving some of the crucial properties of the type system with these subtyping rules. In particular, it is shown that the structural subtyping rules are coherent and that transitivity is admissible in the presence of the functorial rules of computational equality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coercive Subtyping

We propose and study coercive subtyping, a formal extension with subtyping of dependent type theories such as Martin-LL of's type theory 38] and the type theory UTT 30]. In this approach, subtyping with speciied implicit coercions is treated as a feature at the level of the logical framework; in particular, the meaning of an object being in a supertype is given by coercive deenition rules for t...

متن کامل

Coercive Subtyping in Type Theory

We propose and study coercive subtyping, a formal extension with subtyping of dependent type theories such as Martin-LL of's type theory NPS90] and the type theory UTT Luo94]. In this approach, subtyping with speciied implicit coercions is treated as a feature at the level of the logical framework; in particular, subsumption and coercion are combined in such a way that the meaning of an object ...

متن کامل

A Calculus of Constructions with Explicit Subtyping

The calculus of constructions can be extended with an infinite hierarchy of universes and cumulative subtyping. Subtyping is usually left implicit in the typing rules. We present an alternative version of the calculus of constructions where subtyping is explicit. We avoid problems related to coercions and dependent types by using the Tarski style of universes and by adding equations to reflect ...

متن کامل

Coq à la Tarski: a predicative calculus of constructions with explicit subtyping

The predicative Calculus of Inductive Constructions (pCIC), the theory behind the Coq proof system, contains an infinite hierarchy of predicative universes T ype 0 ∈ T ype 1 ∈ T ype 2 ∈. .. and an impredicative universe P rop for propositions, together with an implicit cumulativity relation P rop ⊆ T ype 0 ⊆ T ype 1 ⊆ T ype 2 ⊆. .. . Subtyping in Coq is implicit, and is handled by the kernel. A...

متن کامل

A Syntax for Higher Inductive-Inductive Types∗

Higher inductive-inductive types (HIITs) generalise inductive types of dependent type theories in two directions. On the one hand they allow the simultaneous definition of multiple sorts that can be indexed over each other. On the other hand they support equality constructors, thus generalising higher inductive types of homotopy type theory. Examples that make use of both features are the Cauch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematical Structures in Computer Science

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2008